A New Extended Jacobi Elliptic Function Expansion Method and Its Application to the Generalized Shallow Water Wave Equation

نویسندگان

  • Yafeng Xiao
  • Haili Xue
  • Hongqing Zhang
چکیده

With the aid of symbolic computation, a new extended Jacobi elliptic function expansionmethod is presented by means of a new ansatz, in which periodic solutions of nonlinear evolution equations, which can be expressed as a finite Laurent series of some 12 Jacobi elliptic functions, are very effective to uniformly construct more new exact periodic solutions in terms of Jacobi elliptic function solutions of nonlinear partial differential equations. As an application of the method, we choose the generalized shallow water wave GSWW equation to illustrate the method. As a result, we can successfully obtain more new solutions. Of course, more shock wave solutions or solitary wave solutions can be gotten at their limit condition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Modified F-Expansion Method Applied to Coupled System of Equation

A modified F-expansion method to find the exact traveling wave solutions of  two-component nonlinear partial differential equations (NLPDEs) is discussed. We use this method to construct many new solutions to the nonlinear Whitham-Broer-Kaup system (1+1)-dimensional. The solutions obtained include Jacobi elliptic periodic wave solutions which exactly degenerate to the soliton solutions, triangu...

متن کامل

A new elliptic equation rational expansion method and its application to the shallow long wave approximate equations

A new elliptic equation rational expansion method is presented by a new general ansätz, which is a direct and unified algebraic method for constructing multiple and more general travelling wave solution for nonlinear partial differential equation and implemented in a computer algebraic system. The proposed method is applied to consider the shallow long wave approximate equation and obtains rich...

متن کامل

The Investigation of New Solutions to Two Coupled Nonlinear Wave Equations Via a Weierstrass Semi-Rational Expansion Method

In this paper a new Weierstrass semi-rational expansion method is developed via the Weierstrass elliptic function ℘(ξ; g2, g3). With the aid of Maple, we choose the coupled water wave equation and the generalized Hirota-Satsuma coupled KdV equation to illustrate the method. As a consequence, it is shown that the method is powerful to obtain many types of new doubly periodic solutions in terms o...

متن کامل

Extended trial equation method to generalized nonlinear partial differential equations

In this article, we give the extended trial equation method for solving nonlinear partial differential equations with higher order nonlinearity. By use of this method, the exact travel-ing wave solutions including soliton solution, singular soliton solutions, rational function solution and elliptic integral function solution to one-dimensional general improved KdV (GIKdV) equation and Rðm; nÞ e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012